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RESUMO

A área de Document Understanding possui como objeto de estudo documentos, isto é, objetos
contendo informações em formato visual e/ou textual, podendo ser arquivos de texto ou imagens.
A subárea de Visual Document Understanding (VDU) trata especificamente do segundo caso,
e é o objeto de estudo deste trabalho. Podemos conceitualizar o problema da área como o
de extração automática de informação a partir de imagens de documentos, um problema com
várias ramificações que atualmente é dominado por soluções de machine learning. De particular
interesse é o cenário em que se quer extrair informações de documentos oficiais como cartões
de identidade, que não podem ser disponibilizados publicamente por conterem dados sensíveis,
e portanto mostra-se como um cenário difícil que ainda é pouco tocado pela pesquisa visto
que as técnicas de machine learning depende de grandes volumes de dados para treinamento.
Este trabalho apresenta um estudo da área de VDU, com uma revisão histórica do campo e do
atual estado da arte, bem como dos datasets disponíveis e das ferramentas desenvolvidas para
criar documentos sinteticamente. Também apresenta melhorias a uma ferramenta utilizada para
sintetizar um dataset de documentos brasileiros, e um novo dataset seguindo o penúltimo formato
de RGs físicos, implantado em 2019. O dataset será público, com o objetivo de viabilizar novas
pesquisas envolvendo esse tipo de documento. Por fim, será realizado um estudo comparativo
entre alguns métodos do estado da arte utilizando o novo dataset, tanto o sintético quanto os
dados reais usados na sua síntese, e alguns outros disponíveis na literatura. Nosso objetivo é
analisar a performance do atual estado da arte, descobrindo quais são as ideias propostas que
funcionam melhor em cada contexto, e estudar o impacto da adição de dados sintéticos aos
conjuntos de treinamento, decidindo enfim se essa técnica melhora a performance e se os dados
sintéticos podem substituir os dados reais completamente.

Palavras-chave: Visão computacional. Compreensão de documentos visuais. Documentos
oficiais.



ABSTRACT

The area of Document Understanding is the study of documents, that is, objects containing
information in visual and/or textual format, in text or image files. The subarea of Visual
Document Understanding treats the second case specifically, and is the subject of study in this
work. The problem for this area can be conceptualized as the automatic information extraction
from document images, a problem with several branching tasks that is currently dominated by
machine learning solutions. Of particular interest is the scenario of information extracting from
official documents such as identity cards, which cannot be made publicly available since they
contain sensitive information, and as such it appears as a difficult scenario that is still mostly
untouched by research since the machine learning solutions found in the literature rely on a big
volume of data to be trained. This work presents a study of the area of VDU, with a historical
review of the field and the current state of the art, as well as the available datasets and the tools
developed to create synthetic documents. It also presents some improvements made over an
existing synthesizer for brazilian documents, and a novel dataset following the last format of
physical identity cards, implanted in 2019. The dataset will be publicly available, with the goal
of enabling new research involving this sort of document. Finally, a comparative study between
a few state of the art methods will be made, each method being evaluated on the new dataset,
both the synthetic and the real data used for synthesis, and some others that are available in the
literature. Our goal is to analyze the performance of the current state of the art, unravelling out
which ideas work best, and to study the impact of the addition of synthetic data to the training
sets, ultimately deciding whether it improves performance and whether it can replace the real
data entirely.

Keywords: Computer Vision. Visual Document Understanding. Official Documents.
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1 INTRODUCTION

The area of Document Understanding deals with tasks involving the extraction of information
from documents. The object of study, the "document", is weakly defined and is thought of as
many different things, depending on the context. Early OCR research referred to documents
as bitmaps containing scanned text to be parsed, while modern NLP research may refer to a
document as a sequence of text, and both approaches may be thought of as subareas of DU. This
work is focused on the subarea of Visual Document Understanding, which considers a document
to be an image, often in RGB format, which contains structured information encoded in the
format of text, images and layout.

Many tasks performed within the domain of VDU, such as document classification,
are highly relevant for automatized document processing. Document classification consists of
assigning one class from a set of known classes to an instance of a document. This may be, for
example, the distinction between an identity card and a driver’s license. Without a reliable and
automatic method for separating these documents, humans would be required to sift through each
document and label them manually. This is a very lengthy task that incurs in less productivity
and higher labor costs if done by a human.

Another important task is the one of entity labeling. It consists on assigning one class
from a set of known classes to an entity within the document, and can be done at segment or
token levels. Segment-level entity labeling considers the minimal entity to be a fully coherent
block of information within the document, for example the name of the identity card’s holder.
Token-level entity labeling considers a smaller, if varied granularity. The token may be either
each individual word within a segment or a smaller piece, down to the character level, depending
on the tokenization process used.

This work focuses on official documents, a scenario that is mostly untouched by current
research due to the sensitive nature of the data. The current state of the art in VDU utilizes
machine learning technologies, which often requires a certain amount of labelled data to be
trained and reach good accuracy levels. Since data as sensitive as personal documents cannot
be made publicly available, public datasets must be entirely comprised of anonymized and/or
synthesized data, which may affect the model’s performance.

Our proposal includes a new, public dataset containing synthesized instances of brazilian
identity documents, following the last format issued in 2019. To the best of our knowledge, this
is the first public dataset to present this document format. We also propose several improvements
to the synthesizer used to create the Brazilian Identity Document dataset, which includes older
identity cards, driver’s licenses and physical people registries, including a new inpainting method
and a more accurate homography. Finally, we perform a state of the art analysis using our new
datased, NBID (New BID), as a benchmark.

This work is organized as follows. Chapter 2 presents the basic principles of the field,
nomenclatures and techniques used as well as the metrics used for evaluation. Chapter 3 is a
review of the current state of the art in the field, complete with the datasets, synthetic data engines
and models built for the tasks involved, as well as the key challenges found in the field. Finally,
section 3.3 presents the conclusion and the detailed proposals for this work.
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2 THEORETICAL BACKGROUND

The current state of the art for VDU is comprised entirely of machine learning models. In this
section, we introduce the fundamentals of the field and present a brief overview of common
neural networks used as subroutines within state of the art models, as well as the tasks and
metrics in which such models are used and evaluated.

2.1 MACHINE LEARNING BASICS

Machine learning is a subfield of artificial intelligence focused on learning from data. Models
contain a set of artificial neurons, separated into layers with connections between layers, and the
knowledge is encoded within the weights given to each neuron as they are updated when new
data is seen.

More specifically, the input is encoded as a vector of length 𝑁 and passed into the input
layer. Each dimension of the input vector is multiplied by the corresponding neuron’s weight, and
the results are summed and passed through an activation function that normalizes the amplitude
of the output, usually between 0 and 1 or -1 and 1. Typically, a neural network contains hidden
layers between the input and output, which may acquire a deeper understanding of the data by
acting as a feature extractor. The input is passed through the layers sequentially, and the activation
function acts as a residual connection between two layers, taking the output of the last layer and
controlling its amplitude for the next.

The weights of the neurons are updated through the backpropagation algorithm, which
leverages the gradient descent technique to lower the error. A loss function is used, taking as
parameters the output of the last layer of the network and the expected outcome, and models how
far from the ideal output the model is, that is, the current error. This error is propagated into the
network from the last layer to the first, where each neuron has its weight updated: the new weight
is the sum of the current weight and the product of the error by the neuron activation value by the
learning rate, a parameter that encodes how fast the network should converge. Large learning
rate values may decrease gradient accuracy (that is, the gradient moves at larger steps, possibly
ignoring many points of local minima), while smaller values will cause the network to take a
longer time to converge.

This is the basic functionality of a fully connected neural network, where all the neurons
in a layer are connected to every neuron in the next and/or prior layers. Usually, we can have
network containing sparser connections, or even fully connected networks that use a dropout
technique, where some neurons are stochastically "killed" and do not appear in the computation
anymore.

2.1.1 Activation and loss functions

The linear activation function is a simple function of the form 𝑎𝑥 + 𝑏, that leaves the output
mostly unaltered, completely proportional to the input.

The rectified linear unit, ReLU for short, is a refinement of the linear activator that is set
to zero if the input is negative. This means only half of the neurons will be triggered, on average.

A gaussian activation function is used for introducing non-linearity, and maps the input
into a gaussian distribution. For example, 𝑓 (𝑥) = 𝑒𝑥𝑝(−𝑥2).
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As for error modeling, the loss functions used are largely tied to the task to be solved.
Classification tasks will often use the cross-entropy loss function. In 2.1, 𝑦𝑖 represents the real
probability that the input is actually the i-th class, 𝑥𝑖 represents the output of the i-th neuron, and
𝑐 is the number of classes.

𝐶𝐸 (𝑥, 𝑦) = −1
𝑐

𝑐∑︁
𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔(𝑥𝑖) (2.1)

The binary cross-entropy loss is a special case of cross-entropy where there are two
classes exactly, and is computed as in 2.2.

𝐵𝐶𝐸 (𝑥, 𝑦) = −1
𝑐

𝑐∑︁
𝑖=1

(𝑦𝑖 · 𝑙𝑜𝑔(𝑥𝑖) + (1 − 𝑦𝑖) · (1 − 𝑥𝑖)) (2.2)

Some image reconstruction and regression tasks utilize the mean squared error loss
presented in 2.3, which encodes the average of the squared differences between the real values
and the ones predicted by the network. For image reconstruction, 𝑛 encodes the number of pixels.

𝑀𝑆𝐸 (𝑥, 𝑦) = 1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 (2.3)

Some more specific loss functions are used in other scenarios, tweaked according to the
needs of the models, but are mostly variations on the losses presented here. The same holds true
for activation functions.

2.1.2 Training Procedures

Training a network with a given dataset consists of forwarding every instance into the model,
one batch of instances at a time, and adjusting the weights accordingly to each batch of data.
Typically, the choice of a batch size considers a tradeoff between accuracy (larger batch sizes
generally increasing the accuracy of the gradient estimation) and memory efficiency (since more
instances per batch means more memory being used at a time). One full rotation of the entire
dataset is called an epoch. The dataset used for training is called the training set. Datasets may
be split into training and testing sets, where the testing section is only used for evaluation, and
must be disjoint from the training.

Additionally, a third disjoint set may be used for validation, which is essentially a testing
set that evaluates the network at regular intervals within training. The validation set is often used
for early stopping, a technique that is used to find the optimal point to halt training. It consists
of evaluating the network in the validation set at regular intervals, and halting the training once a
consecutive number of training epochs failed to raise the model’s accuracy to a new best. The
number of epochs may vary, typical numbers are three and five.

Pre-training and Fine-tuning the model is a special training procedure that consists of
an early training procedure in one dataset (the pre-training phase) and another, more focused
training in another dataset (fine-tuning). Pre-training often utilizes special tasks for representation
learning, such as Masked Language Modeling (MLM). MLM is done in NLP with a tokenized
text input, and consists of masking 80% of the tokens in the input vector, randomizing 10% and
leaving the rest unchanged, and asking the model to reconstruct the original sequence. This task
was first presented by (Devlin et al., 2019) and has been widely used since then. Most recent
models present their own pre-training procedures with specific goals.
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2.2 COMMON NEURAL NETWORKS

2.2.1 Multi-Layer Perceptron

The MLP is one of the earliest examples of neural networks, and implements all the ideas in 2.1.
It is a direct improvement of the Perceptron, proposed with a single hidden layer between the
input and output. The hidden size is a parameter that dictates the dimensionality, that is, the
number of neurons, of the hidden layers.

Today, the MLP is used as a submodule of larger models, and can be used as a classifier
in a smaller subtask or as a feature extractor. In the first case, the output layer has the number of
neurons equal to the number of classes, and in the latter only the output of the last hidden layer is
used, as a feature descriptor.

2.2.2 Convolutional Neural Networks

CNNs have been of great relevance for image processing tasks, with the biggest breakthrough on
image classification on the large ImageNet dataset being due to a large CNN architecture. These
networks implement the convolution operation, which convolves a square matrix with an odd
order, called kernel, over each pixel of the input image. The output for every pixel is calculated
with the following procedure. The kernel is centered at the pixel and its new value is set as the
sum of the products between the kernel elements and the corresponding pixels in the old image.
Border pixels are often discarded.

This operation proved to be good at highlighting borders in the image initially, and as
such CNNs became popular for segmentation tasks. However, the convolution also proved to be
great at general pattern recognition, and so these networks have been largely used in much more
varied scenarios.

This operation is used as a layer in the network, each neuron corresponding to one pixel.
The residual connections (the neuron connections between subsequent layers in the pipeline) are
often implemented through the ReLU activation function. Each convolutional layer is followed
by a pooling layer, which halves the dimensionality by reducing each 2x2 square (the reduction
operation may vary, the average value is used more often), effectively gathering information at
lower resolutions.

The last layers are composed of MLP-like hidden layers and a final fully-connected
layer, for classification. CNNs are often used with a CE loss, for the appropriate task, but some
lightweight models such as ResNet may also be used as feature extractors.

2.2.3 Recurrent Neural Networks and Transformers

The RNN is a special type of neural network that contains cycles between neurons, which means
the network’s own output may influence its learning. These networks are often used in NLP
tasks, as their recurrent nature makes them naturally better at processing sequential data, where
the data at the end of the chain is partially determined by earlier data, for example in the case of
natural language.

The Long Short Term Memory model incorporates the ability to forget, fixing the issue
of exploding or vanishing gradients due to limited floating point precision. This is implemented
through a special gate that multiplies the input by a weight matrix, where the result is closer
to zero where the information is deemed less relevant. These weights are dynamically learned
from the data. There are two other gates, for input and output. The input gate regulates the input
with a sigmoid function, which attributes greater weight to more relevant information, and the
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output is a hyperbolic tangent function that acts as a residual connection between the output of
the sigmoid and the next layer.

Bi-Directional LSTMs function similarly to LSTMs, except there is a second network
running in the opposite direction. The idea is that not only does the earlier data affect the
subsequent data, the opposite is also true.

Transformers are a special type of RNN made as an encoder-decoder architecture, where
each layer is composed of a multi-headed attention component and a feed-forward component.
The attention function is implemented as a mapping between a set of queries and key-value pairs
into an output, all of which are vectors of same dimensionality 𝑘 . The inputs are projected into
the attention space for each attention element through learned key (K), query (Q) and value
(V) matrices. The output represents the compatibility between the queries and the keys. In the
Transformer, a single attention head is a component that performs the transformation described
in 2.4.

𝐴𝑡𝑡 (𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉 (2.4)

Multi-headed attention consists on computing attention several times in parallel in the
same Transformer layer. For each head, the inputs are linearly projected with different learned
functions, and the final result of the layer is the concatenation of the output of every head. This
makes it possible to learn different aspects from the same data, adapting the network’s weights
accordingly.

2.3 TASKS AND METRICS

In this section, we present the most common downstream tasks in VDU and the metrics used for
evaluation.

2.3.1 Optical Character Recognition

OCR consists of extracting the text from an image, both printed or handwritten. It is the oldest
task in Document Understanding, and usually left to established, already existing methods such
as Tesseract (Smith, 2007).

2.3.2 Document Classification

The task of classification, in a machine learning context, consists of assigning the correct class to
an input. More formally speaking, given a finite set of known classes and an input represented as
a numeric vector with an assigned class, the model is asked to predict the correct value from
the set of classes. The input representation may be a set of feature vectors as well. For VDU,
Document Classification is the particular case of classification where the input vectors represent
the image of a document.

2.3.3 Entity Labeling

Entity labeling, or entity recognition, is defined as follows. Given a document containing a set of
semantic entities pertaining to a finite set of known classes, assign the correct class to every entity
in the document. Essentially, this is the same classification task at a lower level of granularity,
where each document instance contains various entities to be classified.
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This task can be done at different granularity levels, depending on what is recognized as
a semantic entity. It varies from a section of the document to its elements - tables, paragraphs,
images, down to each textual token. In this work, we focus on the segment-level entity labeling
task, which considers an entity to be an entire entry in the document, not including the headers.

2.3.4 Key Information Extraction

The task of KIE is similar to Entity Labeling. Given a document instance, its entities and a set of
classes, the model is asked to predict which entity belongs to each class, where every class is
linked to exactly one entity in the document, and some entities may not have a class attributed.

Differently from Entity Labeling, where we wish to assign one label to every entity,
possibly having duplicates, here we want to assign exactly one entity to every label. This task is
also relevant in our domain, as often we would like to extract specific types of information from
the document.

2.3.5 Entity Linking

Given a document containing a set of semantic entities, where each entity may be linked to
another entity in a key-value manner, retrieve the keys and values contained in the document and
their respective linkings. Entities may either be the key, the value, or neither. It is common for
some datasets to include a header class as well, and some may even add another class representing
entities that are none of the above, frequently being unimportant to the main document.

2.3.6 Named Entity Recognition

The task of NER is primarily tied to the NLP field, but also appears in some document
understanding contexts. It consists of, for a sequence of text, find groupings of tokens representing
a key information and assign to them the correct class. The entities to be found are significant
elements of the information that are constantly referred to in the text: names, locations, dates,
quantities, among others.

2.3.7 Common Metrics

The most common metric used to evaluate these tasks is the accuracy, simply defined as the
ratio between the number of correct guesses and the total number of instances predicted. Some
variants include the top-3 and top-5 accuracies. Most models assign a probability for each class,
and the predicted class is defined as the one with the highest assigned probability. The top-3
metric considers a correct guess to be one in which the correct class is assigned one of the three
highest probabilites by the model. The top-5 metric, accordingly, considers a correct guess as the
right class being contained in the top 5 probabilities.

Another important metric is the F1-score, or F-measure. For a binary classification
problem, where only two classes are possible (which can be arbitrarily called true and false), the
F1-score is defined as follows in 2.5. Precision is defined as the ratio between true positives and
true positives plus false positives. A true positive means the instance was correctly predicted as
true, while a false positive means a false instance was incorrectly predicted as true. Recall is
defined as the ratio between true positives and true positives plus false negatives. A false negative
means an instance that is true was incorrectly predicted as false. The F1-score is the harmonic
mean between the two metrics.
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𝐹1 =
2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (2.5)

This metric can be extended into a multiclass scenario. In this case, the metric is
measured separately for each class, that is, for a class 𝑎, a true positive is a correct guess, a false
positive means the instance does not belong to class 𝑎, but was predicted as such, and a false
negative means the instance belongs to 𝑎, but was predicted as any other class. The F1-score can
be macro averaged into a single measure through the arithmetic mean of the scores across all
classes.

Another way of computing the F1-score across all classes is by micro-averaging. In
this case, the precision and recall scores are calculated jointly considering true positives and
false positives and negatives for all classes at the same time, and the final score is computed
with equation 2.5. The micro-averaged metrics of precision and recall are sometimes called
mean entity precision and mean entity recall respectively, when the presented task deals with
entity-level classification.

Accuracy is often used for Document Classification, while the micro-averaged F1-score
is more often used for entity labeling, and the mean entity f-score is calculated for NER tasks. The
entity linking task mostly uses a particular F1-score variant that is calculated among the possible
key-value pairs between every entity. The top-N accuracies are also used for classification,
particularly when the number of classes is very high.
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3 RELATED WORK

In this chapter, we present the current state of the art overview for VDU and the datasets used in
evaluation. We also describe a few data synthesizing methods found in the literature.

3.1 OCR AND VDU DATASETS

Name Year of release Nature of data Number of instances
PubLayNet (Zhong et al., 2019b) 2019 PDFs of scientific articles 360k+
PubTabNet (Zhong et al., 2019a) 2019 Tables from scientific articles 568k
NIST special database 2 (Garris, 2008) 2016 Black and white synthesized tax forms 5590
NIST special database 6 (Dimmick et al., 1992) 2016 Black and white synthesized tax forms 5595
SROIE (Huang et al., 2021) 2019 Scanned invoices 1000
DocBank (Li et al., 2020) 2020 Scientific papers 500k+
EPHOIE (Wang et al., 2021) 2021 Admission exams 1494
EATEN (Guo et al., 2019) 2017 Tickets, passports and business cards 600k+
BID (Álysson Soares et al., 2020) 2020 Official brazilian documents 28k+
MIDV (Arlazarov et al., 2018) 2018 Passports and ID cards 3k images, 69k frames
Kleister (Stanislawek et al., 2021) 2021 Confidentiality agreements and charity reports 64k pages
CORD (Park et al., 2019) 2019 Pictures of invoices 11k+
RVL-CDIP (Harley et al., 2015) 2015 Scanned document images 400k
FUNSD (Guillaume Jaume, 2019) 2019 Scanned document images 199

Table 3.1: Document vision datasets

PubLayNet (Zhong et al., 2019b) is a very large and fairly recent dataset for document
layout analysis. It is derived from PubMed Central™ Open Access repository of journal articles
pre-prints, which contains over a million document instances in PDF and XML formats. The
PubLayNet dataset is composed of a subset of these documents, which were automatically
annotated by matching the XML document to the PDF. The dataset describes five types of
semantic entities: titles, text, figures, tables and lists. It is comprised of just over 360 thousand
instances, making it comparable to other computer vision datasets such as ImageNet (Deng et al.,
2009).

Likewise, PubTabNet (Zhong et al., 2019a) is also derived from PMCOA, and contains
an even larger number of tables extracted from it. The annotation follows the HTML format,
which was also automatically extracted through matching the XML document to the PDF, and
the dataset reaches a total of 568 thousand instances of tabular data. The PubTabNet paper also
proposes an encoder-dual-decoder model for table recognition, evaluated in the proposed dataset.

NIST (Garris, 2008; Dimmick et al., 1992) provides a variety of special databases,
which contain many types of digital data. Of special interest are the datasets 2 and 6, called
"Structured Forms Reference Set of Binary Images". They consist of just above 11k pages of
binary images of tax forms, filled with hand-printed data. These datasets are suitable for classical
OCR tasks such as character recognition and segmentation, and can also be used in downstream
VDU tasks such as entity-linking and form identification.

The ICDAR 2019 Robust Reading Challenge on Scanned Receipts OCR and Information
Extraction (SROIE) (Huang et al., 2021) presented the homonym dataset, used for training and
evaluation on the tasks of text localization and recognition and key information extraction. Across
training and testing, the dataset contains 1k annotated images of scanned receipts. Apart from
the aforementioned tasks, this dataset can also be used for the task of entity labeling, so long as
only the annotated entities are considered.
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DocBank (Li et al., 2020) is another large document dataset built for layout recognition,
containing half a million instances of automatically labeled LATEX-compiled documents. The
instances are annotated with a weakly supervised approach based on segmenting the end document
by adding a colored outline to the LATEXsource file. The dataset defined the five elements from
PubLayNet plus seven new entity types: abstract, author, caption, equation, footer, reference,
and section. Differently from PubLayNet however, the annotations are fine-grained down to the
token level, allowing not only NLP tasks to be performed with it, but also for more refined VDU
models to use the textual information as an embedding.

EPHOIE (Wang et al., 2021) is a collection of 1,494 images of examination tests from
various chinese schools. The images are scanned and cropped to the head, which contains most
key information about the school, student and test itself. These informations are anonymized
and synthesized to protect privacy. The paper also proposes a new visual information extraction
model, divided into detection, recognition and information extraction branches, the last of which
is based on a multi-headed attention layer for learning.

Entity-aware Attention, or EATEN (Guo et al., 2019) is the name of both a model and
a dataset in VDU. The model is an encoder-decoder RNN that uses a CNN as backbone for
visual feature extraction. The dataset is composed of over 600k instances, split across train
tickets, passports and business cards. All of the data is synthetic, except for 1.9k real train
tickets. The synthesizing is done by a proposed engine in three stages: text preparation by
web scraping, font rendering on prepared backgrounds and pure images without text, and some
data augmentation techniques, namely rotation and resizing, and application of several types of
noise. This dataset includes segment labels for all types of data, and as such may be used for
segment-based downstream tasks, even though the paper focuses on simple OCR for evaluation.

The BID, or Brazilian Identity Document dataset (Álysson Soares et al., 2020), is
composed of three types of documents: identity cards, driver’s licenses and physical person
registries. The data is synthesized via a publicly available engine, which will be described in
detail later. Unfortunately, although the segments are properly annotated with their respective
transcripts, there is no set of classes for each segment, which limits the usefulness of the dataset.

MIDV-2020 (Arlazarov et al., 2018) is a dataset composed of 2k scanned images, 1k
photos of mock identity documents and 1k video clips, with unique text field values and artificially
generated faces. The documents are identity cards and passports, the background images of which
were obtained from Wikimedia Commons, with the sensitive text erased and re-synthesized,
and faces generated through the StyleGAN (Karras et al., 2018) model. Videos have individual
annotated frames. With over 72k total annotated images, this is the largest official document
dataset to date, to the best of our knowledge, and features documents from many european and
asian countries.

Kleister (Stanislawek et al., 2021) is composed of two datasets of long, visually complex
documents spanning many pages each. The NDA, or Non-Disclosure Agreement dataset, is
composed of just over 600 documents spanning over 3.2k pages and four entity classes. The
charity dataset has over 2.7k documents on 61k pages, and is composed of annual financial
reports by various charity organizations in England and Wales. This dataset has eight entity
types. Kleister is fit for downstream entity-level tasks, such as key information extraction.

CORD (Park et al., 2019), or Consolidated Receipt Dataset, is a fine-grained invoice
dataset, with individual word position annotations and two levels of entity classes, one for each
individual segment (subtotal prica, discount, service charge) and for groups of segments (all the
previously mentioned classes belong to the subtotal superclass, for instance). As such, CORD is
a fairly large dataset fit for various NLP and VDU tasks, and is one of the most commonly used
benchmarks in recent literature.
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RVL-CDIP (Harley et al., 2015) is a large-scale dataset composed of 400k noisy pictures
of scanned documents pertaining to 16 different classes, such as memo, letter and scientific
publication. These images have low quality and resolution, and do not have annotations apart
from the document class. It is a very challenging dataset, commonly used for evaluation in the
document classification task.

FUNSD (Guillaume Jaume, 2019) is a subset of RVL-CDIP that was annotated using a
mix of automatic and manual annotation procedures. It features a set of four generic classes:
header, question, answer and other. Having clear key-value annotations, this dataset is very
commonly used for entity linking evaluation. It is also a very challenging dataset, as it contains
only 199 instances in total, for training and testing.

3.1.1 Document Synthesizing

Surprisingly, none of the models studied perform any downstream task in any official document
dataset, not even MIDV. However, there is research in document synthesizing.

Donut (Kim et al., 2022) authors propose SynthDoG, which samples document back-
grounds from ImageNet (Deng et al., 2009) and text from Wikipedia articles. The document
itself is assembled from a heuristic rule-based generator for the layout, which treats the segments
of text as squares and uses such perspective to assemble the layout before adding in the text.

DocSynth (Biswas et al., 2021) is a GAN for automatic document creation that uses the
adversarial strategy of training to learn how to mimic a document dataset. The GAN is trained
on PubLayNet (Zhong et al., 2019b) and, although this dataset is already quite large, is proposed
as a means of data augmentation that simply creates new data that is convincingly real.

Yang et al (Yang et al., 2017) also present a method for creating synthetic documents.
The proposed engine has two different methods for generation. The first involves data scraped
from the web arranged into a randomized layout on a LaTeX source file. The second is a more
simple approach, where a few hundreds of real, manually-annotated documents with complex
layouts have their elements randomly replaced with web-scraped data.

Pondenkandath et al (Pondenkandath et al., 2019) propose a GAN-based synthesis for
historical documents. Essentially, the network works in the image to image task by taking as
input the image of a document and transforming it into a seemingly older, weathered manuscript.
The authors utilize two different architectures for this task, cycleGAN (Zhu et al., 2017) and
VGG-19 (Simonyan and Zisserman, 2014), the latter of which proved to yield more faithful
results.

DocCreator (Journet et al., 2017) is a framework that performs a rather simple, but
powerful document synthesis process. It works by pasting text with selected fonts onto pre-defined
background images, and applying some data augmentation techniques to create weathering and
noise. The generated images have extremely finegrained XML annotations, being suited for
almost any downstream VDU task. However, the synthesized documents lack variety, as the
backgrounds and texts are preset. It also functions as a document data augmentation engine.

Raman, Shah and Veloso (Raman et al., 2021) define a document generator that is
generated as a Bayesian Network. This network is built as a structured set of rules that defines
what a document is. The authors treat a visual document as a set of primitive elements, such as
paragraphs, images, titles and tables, logically grouped together according to a set of rules of
structure and layout. The bayesian network stochastically generates the composing elements and
their layout, and an image manipulation library is used to decode the end result as a real picture
of a document. The authors also perform a layout analysis task on the synthetic data and prove it
is just as good as real data in terms of training quality.
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BID authors have also released their implementation of the synthesizer used for the
creation of the dataset. The process implemented follows a simple routine of inpainting sensitive
data, randomly generating new fake data, and pasting it back into the image. The synthesizer
does not require the annotations to include the field class apart from the information type (date,
name, city/state), but also does not include it in the end annotation.

3.1.2 Key Challenges

Most challenged in VDU for official documents lie in the sensitive nature of this data. From
the two synthetic datasets of official documents available in the literature, one is not fit for
downstream tasks, and the other does not seem to have been used for evaluation in recent state of
the art comparisons. Also, MIDV-2020 contains few high quality instances: apart from the video
frames, there are only about three thousand instances of documents. As such, a few challenges
identified are:

A large scale dataset for entity-based downstream tasks. Since all the models in
the state of the art today are based on machine learning techniques, they require a lot of data to
reach high levels of precision. It is vital that a large dataset is available, particularly for brazilian
documents, which currently do not integrate any dataset with entity-level class annotations.

A synthesis engine for official documents. Proposed BID dataset features an open
source synthesizer, which is focused on the three kinds of documents presented in the dataset.
Currently, since it does not work with entity classes, it cannot be used to generate a dataset to be
used in entity-level downstream tasks.

An analysis of the impact of synthetic data. Although a few authors have made a
quantitative analysis for document layout recognition, training the models on real versus synthetic
data, there are no experiments on mixed training procedures, with both real and synthetic. There is
also no experimentation on entity-based downstream tasks, neither on official document datasets.

3.2 INFORMATION EXTRACTION METHODS

Earlier automatic information retrieval relied on instance-specific knowledge of the document
layout and regular expression matching. One of the examples is Intellix (Schuster et al., 2013),
which defines a list of possible layouts for each known document class and matches the input
against each one of them. The inherent problem with this approach is that portability becomes a
problem, as the model has to be tweaked for every new layout instance.

An approach that proved to be more robust is presented by Lample et al (Lample et al.,
2016), which proposes that a document can be viewed as a sequence of text, and as such the
information retrieval task can be mapped into the NER problem, which is a task in the domain of
NLP. A recurrent technique for such problems is the use of RNN. In (Lample et al., 2016), the
authors employ a simple RNN as a textual feature extractor, and a LSTM together with a CRF
for classification, beating most of the state of the art. However, such approach fails to consider
bi-dimensional layout information, and as such has its own limitations.

(Yang et al., 2017) uses a fully convolutional neural network for semantic segmentation
in the task of text recognition. In this context, the output of the CNN is binarized into a pixel-wise
mask that indicates the presence of text at each location (segmentation task). The pixels with
recognized text then receive the value of the text embedding in the corresponding position,
and remain at zero where there is no text. The proposed network is an encoder-decoder fully
convolutional architecture that also reconstructs the original document during training, with an
additional decoder.
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Another use of CNNs in document understanding is in (Harley et al., 2015), the same
paper that proposes the RVL-CDIP dataset. Their approach consists of cropping five different
sections out of the document, one consisting of the entire document, and four overlapping regions
from the top, bottom and sides. These regions are resized, processed by a CNN, compressed by a
PCA and concatenated into a single feature vector. These features are then classified by another
trained fully-connected network.

We highlight these three sources of information - layout, text and visual - as the main
features used in most state of the art models today. Also notorious is the predominance of
RNN-based architectures, particularly Transformers (Vaswani et al., 2017).

One of the many examples is the LayoutLM (Xu et al., 2019, 2020; Huang et al., 2022)
family of Transformer-based architectures, which ties together these three ideas in the form of a
multi-modal feature that encodes the text, the position and the visual embeddings as the input
for the Transformer encoder. The models are also trained with a pre-training strategy that seeks
to make the model learn a stronger correlation between each modal feature. The pre-training
goals include word-patch matching (corresponding words to sections of the document image)
and predicting real values to masked parts of the document.

The LayoutLM paper also describes a new technique for generating visual embeddings
from the image. While most methods utilize a generic CNN, most frequently a ResNet (He et al.,
2015) model, the authors sliced the image into several patches and performed a linear projection
onto them, effectively encoding a new visual embedding. This process borrows from a similar
technique used in the Vision Transformer (Dosovitskiy et al., 2020), which treats the image as a
sequence of square patches, most commonly used for image classification tasks.

In GraphDoc (Zhang et al., 2022), a gate fusion layer is proposed, where multi-modal
feature fusion is done explicitly via residual connections between layers. The model also presents
a graph attention mechanism, which computes a hidden representation for each semantic entity
in the image (entity to node and document to graph being the correspondence) based on its
neighbors. The paper also utilizes a pre-training technique, where random sentences are masked
and the model must predict the corresponding text embeddings based on the known text and
visual embeddings.

For end-to-end VDU, there is also research in OCR-free solutions. Apart from the
synthesizing engine, Donut (Kim et al., 2022) authors also propose a new VDU model. This
model employs the Swin Transformer (Liu et al., 2021) for visual feature extraction, the result of
which is passed onto a BART (Lewis et al., 2020) textual decoder, which is also Transformer-based.
Finally, as a pre-training approach, the model must generate the tokens present in the input image
in reading order.

EATEN (Guo et al., 2019)’s homonym model, Entity-aware Attention Text Extraction
Network, is proposed to extract Entities of Interest using a single, simple attention-based network.
The work is an entity-level text recognition model, and uses a CNN-based backbone for image
feature extraction, and an encoder-decoder attention network into which the CNN feature maps are
passed. Interestingly, the network has no sense of text recognition, and instead only learns EoIs
from the visual features alone. It features a LSTM model into which the decoder’s embeddings
are passed for classification.

EPHOIE (Wang et al., 2021) authors also propose VIES, Visual Information Extraction
System, composed of detection, recognition and information extraction modules. The detection
module takes the region of interest as input, pools it, performs 2D convolution and pools it again,
and finally passes it through a linear projection layer at the end. The recognition module takes
the box as input, and runs it through an attention-based encoder-decoder architecture for feature
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extraction. Finally, the information extraction branch uses a multi-headed attention network for
sequence labeling, taking the output of the other two modules as input.

Three other models are considered for our experiments. These are PICK (Yu et al.,
2020), StrucTexT (Li et al., 2021b) and DocFormer (Appalaraju et al., 2021).

PICK is an encoder-decoder network that features a third module for graph convolution.
The graph is built between entities, the connections being weighted according to the entities’
relation between one another. The idea is to leverage the spatial relationship between entities
and learn from it. The encoder is built as a combination of a CNN and a Transformer, and the
decoder is composed of a BiLSTM and a CRF for classification.

StrucTexT is a Transformer that relies on cross-modal feature fusion between a WordPiece
tokenization of the text, a ResNet-based visual embedding, and other features to encode relative
and absolute positioning of the entity and text. Its state of the art performance is achieved through
a few special pre-training procedures. These are self-supervised: Masked Visual Language
Modeling, Segment Length Prediction and Paired Box Detection. MVLM asks the model to
reconstruct the original textual embedding, where part of it has been masked by a MASK token
and another part was randomized. SLP asks the model to estimate the length of a sequence, given
its visual embeddings. PBD requires the model to estimate the angle (discretized into 12 buckets)
between two entities given the subtraction of their visual embeddings.

DocFormer is an end-to-end trainable Transformer model that proposes a novel self-
attention mechanism, tying together visual and textual embeddings. The embeddings are
extracted via a ResNet50 model and the WordPiece tokenizer into a pre-trained LayoutLM
model, respectively. The attention mechanism is modelled as an expanded version of the vanilla
self-attention in the Transformer, with the (element-wise) addition of three other attention results.
These are the query ID, key ID and feature modal attentions. Equation 3.1 features the entire
self-attention mechanism for visual features.

𝑎𝑣𝑖 𝑗 = (𝑥𝑣𝑖𝑊
𝑄
𝑣 ) (𝑥𝑣𝑖𝑊𝐾

𝑣 )𝑇 + (𝑥𝑣𝑖𝑊
𝑄
𝑣 𝑎𝑖 𝑗 ) + (𝑥𝑣𝑗𝑊𝐾

𝑣 𝑎𝑖 𝑗 ) + (𝑉𝑠𝑊𝑄
𝑠 ) (𝑉𝑠𝑊𝐾

𝑠 ) (3.1)

In equation 3.1, the first term represents vanilla self-attention, the second term represents
Query ID attention, the third represents Key ID attention and the last term is calculated based on
the visual embeddings of the corresponding layer. The equation is analogous for textual features.
The attention weights are shared across both features in the same layer, which helps the model to
learn feature correlation.

DocFormer is also pre-trained with multi-modal tasks, MVLM is performed here using
the fused features from the encoder, as well as other two tasks: Learn To Reconstruct which asks
the network to reconstruct the original image from its embeddings, and Text Describes Image,
which tries to predict whether the textual and visual information belong to the same document.

3.2.1 Pre-training Frameworks

Following the line of research based on conditioning the model into learning specific correlations
explicitly through some pre-training tasks, some pre-training frameworks were developed for
generic document learning.

SelfDoc (Li et al., 2021a) is a task-agnostic and coarse-grained framework that presents a
novel self-attention mechanism for feature fusion. It is able to work with unlabeled data, as it uses
a document object detector (a Faster R-CNN (Ren et al., 2015) in the original implementation)
and a generic OCR engine (Tesseract (Smith, 2007), in the original implementation) for parsing.
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It uses the last layer of the CNN as a visual embedding and Sentence-BERT for textual
embeddings (Reimers and Gurevych, 2019).

Its self-attention mechanism is split into two blocks: a single modality encoder, which
is akin to the vanilla Transformer self-attention, and a cross-modal encoder, which uses two
novel attention functions. The cross-modal attention is modeled by exchanging the embedding
inputs from each modality. The first function swaps the keys between visual and textual attention
flows, modeling the agreement between the modalities, and the second swaps the queries, which
models new cross-modal relationships. At the time of its release, it beat the state of the art in
entity recognition on FUNSD with 83.36% F1-score.

VLCDoC (Bakkali et al., 2022) proposes a Vision-Language Contrastive Pre-Training
Model for the document classification task. It utilizes a pre-trained visual transformer (Dosovitskiy
et al., 2020) architecture as a visual feature extractor, and a standard OCR mechanism into
a pre-trained BERT (Devlin et al., 2019) model for textual features. Its main proposal is the
self-attention mechanism and architecture, the latter of which can be thought of as two separate
Transformer flows that interact with one another through the cross-modal attention module.

The framework proposes two Cross-Modal Alignment attention modules, IntraMCA and
InterMCA. InterMCA enhances cross-modal features by swapping the queries between language
and vision attention flows and computing vanilla self-attention, and fusing the mixed result via
an additive operation with the pre-attention visual embedding. IntraMCA performs element-wise
product between the features and the attention flow, and fuses the two via a linear additive layer
at the end. Since the two modal features each have their own Transformer module, and as such,
independent weights, only one of them are used for classification at a time.

Using only visuals for evaluation, the model beat the state of the art models that only
rely on two of the three modalities: vision, language and layout, in the classification task on
RVL-CDIP, at 92.64% top-1 accuracy. A cross-dataset experiment is made, with pre-training on
one dataset and fine-tuning on another, also beating the state of the art.

XDoc (Chen et al., 2022) is optimized into being a light-weight model, trained with
only textual embeddings. The paper uses a vanilla Transformer as architecture, and focuses
on performing the masked language modeling pre-training task and extracting three types of
textual features from different documents. These are the plain text, acquired through adding
the WordPiece tokenization to the 1D positional embedding, and the document and web text
embeddings, acquired through adding the plain text embedding with the result of the adaptive
layers for each case.

The adaptive layer is a simple Linear-ReLU-Linear pipeline, and there is one for each
of document and web text types. the document adaptive layer takes as input the 2D embedding
for the text, encoding the corners plus the width and height of the bounding box, while the web
layer takes the XPath embedding as input, encoding information about the HTML tags of the text.
In the document text tests, XDoc reaches state of the art performance on entity recognition on
FUNSD, with an F1-score of 89.4%.

MGDoc (Wang et al., 2022) aims to leverage multi-granular information by modeling
features at different levels: the entire page, its entitites, and its words. For pre-training, the tasks
used are the masked text and masked vision modeling, where the model is asked to predict the
original value of the masked features on each modality. The multi-modal encoding works by
extracting the features at the three levels of granularity: a ResNet run on the Regions of Interest
is used for visual features, Sentence-BERT for textual, and the bounding boxes for the layout.

The attention mechanism is modelled into a multi-granular setting, aiming to learn
interaction between granularity levels intead of fusing features. To the vanilla self-attention
equation are added the hierarchical bias and relative bias. The hierarchical bias encodes the
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inside or outside layout relationship between entities, encoding whether the words belong to
a region or a region contains words. The relative bias encodes the relative distance between
bounding boxes, at both word-level and entity-level. There is also a second attention mechanism
for feature fusion, following the practice in VLCDoC’s InterMCA swapping the keys between
modalities. This is done from text to visual and vice versa. Some special loss functions are also
designed for each module.

MGDoc also manages to reach 89.4% F1-Score on FUNSD, and 97.1% on CORD,
beating the state of the art on both datasets. Accuracy on document classification on the
RVL-CDIP dataset is not as high, losing to most of the models compared, including SelfDoc, at
93.64%.

3.2.2 Key Challenges

The main challenges in the field, besides the data availability, are listed below. These are observed
from the state of the art review presented, and based on comparisons between the study, the state
of the art in other fields and the current direction of research.

Official document-focused models. Most of the datasets used for evaluation feature a
variety of scanned documents, which feature many different layouts, but are inherently different
from other structured documents such as ID cards. Purely layout-based classifiers cannot
generalize their knowledge to new layouts, and machine learning solutions are developed with
other types of document in mind.

Cross-dataset models. Although some experiments have been made in cross-dataset
scenarios, these seem to be limited to document classification tasks. It is hard to map entity-based
recognition between datasets as their class sets may differ greatly. Furthermore, cross-dataset
protocols often involve a fine-tuning phase on the destiny dataset, instead of just testing the model
that was trained on another dataset.

Zero-shot classification. Zero-shot learning as a concept has appeared in classification
tasks in the fields of image (Yi et al., 2022) and text (Gera et al., 2022) recognition, but is a
challenge that has not yet been touched in VDU. It is of particular relevance for official documents,
where fields are usually accompanied by a header, and the fields of interest may vary from country
to country, and even from document to document under the same nationality.

Performance in small datasets. While state of the art performance goes well above the
mark of 90% accuracy/F1-Score in large datasets such as RVL-CDIP, smaller datasets such as
FUNSD do not reach that mark. Most models fail to generalize the knowledge to the point of
reaching such a high standard on small datasets.

3.3 CONCLUSION

The sensitivity of the data in official documents such as ID cards seems to have, so far, impeded
the development of official document understanding in the current state of the art. Although there
are a few datasets available, there is no research focused on extracting information from this kind
of document specifically. Moreover, the impact of synthetic data in the training has not yet been
properly analyzed in VDU as a field. Some data augmentation techniques may prove to be better
than others in this context, but currently a significant quantitative analysis is missing.

This work will be focused on developing a robust document synthesizer engine, as well
as analysing the impact of adding the synthetic data to the training. A novel synthetic document
dataset will be proposed, and the three chosen state of the art models will be evaluated in both the
synthetic and real data. These models will also be trained with a mix of real and synthetic data at
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varying ratios in order to analyze the impact of synthetic data in training. Finally, a comparative
analysis in famous VDU benchmarks will be made between the three, with a focus on standard
training procedures to verify the impact of the pre-training tasks done by their authors.
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4 PROPOSAL

In this chapter, we present the structure of the dataset synthesizer, as well as describing the
dataset generated from real document images provided by Unico, our sponsoring company. We
also describe the models used for evaluation on the new dataset, and discuss the approaches used.

4.1 THE SYNTHESIZER

Our approach is divided into two independent processes, anonymization and synthesizing, where
we erase the sensitive data in the document and replace it with new, synthetic data, respectively.
The following two sections are dedicated to explaining each process.

4.1.1 Anonymization

The input to the anonymization module consists of the RGB image representing the document, its
orientation in the image (in 0, 90, 180 or 270 degrees, counted in clockwise rotation), and a set
of semantic entities to be erased. These entities represent sensitive information in the document:
names, dates, document codes, etc., as well as containing one entity for the document itself.
Essentially, every entity that is not standardized within the document (meaning headers and the
like) must be annotated for anonymization. The entities are represented by the bounding box
surrounding the text, the field label, and the text transcripts, if any.

The field labels must be contained in a set of known entity types, such as name, date of
birth and expedition, parents’ names, etc. These entities vary according to the type of document.
In our case, the documents used are the front and back of the national identity card implanted in
2019. The fields for each are described in section 4.2.

Currently, there are several OCR systems available, so why shouldn’t we skip the
annotation process by using an off-the-shelf OCR for automatic text extraction? The reason is
that these systems are specialized in different kinds of document, and in our experiments they
have performed very poorly. We utilized Tesseract (Smith, 2007)1 and EasyOCR2 for evaluation
on a few real instances gathered by the author himself3. Another reason for this is that these
systems, even if robust, are not perfect, especially given that the documents in our datasets are
often small, rotated, bent or out of focus, making text recognition especially challenging. As such,
using OCR could imply a need for manual revisions of the output, particularly of the bounding
boxes, as these are the information used for the anonymization process.

Anonymizing starts with rotating the document according to the annotated orientation.
Then, the image is resized into a canonical width, keeping the aspect ratio, and the bounding
boxes are also transformed accordingly. The default width is 1920. Then, we perform a warping
and cropping transformation in the document. The warped and cropped image is then masked in
a few special regions: the annotated face, signature and fingerprint. The masked image is then
inpainted to erase the sensitive information. Figure 4.1 presents the image as it comes as the
input (top left), after 90-degrees rotation (top right), after warping (bottom left) and inpainted
(bottom right).

1Publicly available at https://github.com/tesseract-ocr/tesseract.
2Publicly available at https://github.com/JaidedAI/EasyOCR.
3We encountered the same issue when trying to detect the text orientation, which justifies the need for this

annotation as well.

https://github.com/tesseract-ocr/tesseract
https://github.com/JaidedAI/EasyOCR
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Figure 4.1: Example of an image as it passes through the anonymization pipeline.
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The anonymization pipeline may run on its own, or it may serve as well as a pre-
processing stage for the synthesizer. If it does run alone, the annotation is anonymized and the
image is rewarped back to the original stage. Transcript anonymization works by replacing any
letter with the letter "a", and any number with the number "0". Graphic signs such as hiphens
and slashes are kept as-is.

The warping is done in the following way. Given the image, its size, and the document
contained within the image with its bounding box, the warped image’s new height is defined as
the maximum euclidean distance between the top-left and bottom-left, and the top-right and
bottom-right coordinates in the y-axis, and the width is defined accordingly for the top-left and
top-right coordinates, and the bottom-left and bottom-right ones. This is done because the
document may be twisted or inclined in the image, meaning the left height may differ from the
right height, and the same for the top and bottom width.

Then, the document within the image is linearly projected into a rectangle of (𝐻𝑛𝑥𝑊𝑛)
dimensions, where 𝐻𝑛 is the new height and𝑊𝑛 is the new width. This projection is done via a
transformation matrix calculated from the original document bounding box within the image and
the new bounding box calculated from its original heights and widths. The result is a rectified
image containing only the document, cropped out of the original image and projected. The
transformation matrix is used to warp the coordinates of every entity in the original image to the
same plane as the warped image.

Masking works by replacing every pixel contained within the annotated polygon for the
entity with the white value. This is done for the face, signature and fingerprint in order to keep
some image cleanliness, and to ensure that the GAN does not attempt to recreate these kinds of
detail.

Finally, our inpainting method uses a specially trained GAN to learn the background of
the documents. To this end, we use a slightly modified GLCIC (Iizuka et al., 2017) model with a
new training technique. The experiments are detailed in section 4.3.

4.1.2 Synthesizing

The synthesizer module takes as input the warped document image and the entity labels. The
labels must include, at least, the field type and the warped bounding box. The field names must
be part of the set of known entities. If there are unknown field types, the process skips the entity.
The synthesizing process is executed for every entity with sensitive information stored.

It works as follows. First, a "person" object is generated. This object will contain all
the information required for any document instance, i.e. transcripts for all of the known field
types. Then, for every entity, the polygonal bounding box is reduced into a rectangle by taking
the minimum and maximum between the points in the x and y coordinates as the new bounding
box. The new text is extracted from the person object based on the entity type, and the height of
the image is used to estimate the height of the new text in the image according to a set of known
ratios for all entity types.

The new text is then added into a temporary white text on black background mask, in
order to estimate a rectangular bounding box for the new entity, and so such mask is created
separately for every entity and then discarded. Then, it is also pasted in a black text on white
background mask, which will be used for pasting the whole text into the image itself.

After this process, the black text mask is pasted into the original image in the following
way. For every pixel in the mask, if the R, G and B values are all lower than a certain parameter
(set by default to 150), the pixel is replaced with the black pixel in the mask. The intuition is that
the painted text in the mask is not completely black, but corresponds to some shades of grey.
This process of checking the "clarity" of each pixel prevents that pixels close to, but different to



31

255 in value stay in the synthesized image, which would break the text against the background,
making it look fake.

At the end of this process, the image and annotations are re-warped using the inverse of
the transformation matrix applied in the anonymization process. This produces the final result of
the pipeline, which is a document image with the sensitive text replaced by synthetic data. The
rewarped and synthesize image and annotations are then saved to disk.

This process is executed repeteadly for every real instance provided, creating a new
synthetic instance for every iteration. By default, the argument of number of iterations is five, the
value at which we found the performance of most models to reach a plateau.

By default, we use the Arial MT Bold truetype font. We have not found official sources
confirming that this is, indeed, the real font used in the real documents, but it has produced results
that are indistinguishable from the font used in the real instances gathered by the author. The font
height is dynamically set according to the entity type, and the ratios between the text height to
the total document height we found are: 16

425 for the card holder name, 13
425 for the holder’s parents’

names and the general registry number, and 12
425 for all other fields.

Also, the mask used for pasting the text and then merging it with the real image
is originally thrice the size. This is due to limitations in the library used for text to image
manipulation. In particular, there is no anti-aliasing function available, so our workaround was
to paste the text into a mask three times larger and then resizing it down to the correct size using
an anti-aliasing method, which is set by default to the Lanczos resampling in the library.

Furthermore, we would like to take a look at the text generating with more detail. As
stated, a "person" object is created at the time of synthesizing, and the text is generated all at
once upon class initialization. This allows us to set the order for generation, which also allows us
to create conditional generation based on already defined fields.

For example, the card holder’s name may contain up to two surnames taken from the
parents’ names, the expedition date will always be after the birth date, and the voter registration
card will only be generated for individuals of legal age for voting (16, in Brazil). If the correct
conditions are not met, the generated text is set to the anonymous string "*****". In section 4.2,
all the rules for generation, as well as the fields considered, are described in detail.

Part of the code used for text synthesizing is borrowed from the original BID authors,
and is publicly available on github4. We also use the name, surname and city/state dictionaries
provided, with a few modifications, also described in section 4.2.

4.2 DATASET DESCRIPTION

The proposed dataset is crafted from 123 real instances for the front of the document and 141
from the back. Out of these, 4 front images and 9 back images were removed due to excessive
bending of the document, which caused the linear projection to not result in a rectified image.
Therefore, since we use a default of 5 new instances from every real document, we generate 595
front images from 119 real documents and 660 back images from 132 back images, for a total of
1255 synthetic instances. All of the real images were annotated and the anonymized versions
were provided by Unico, and none of the instances gathered by the author make up the definitive
version of the dataset.

We define 25 field types contained in entities across all instances. These do not include
the fields that are anonymized but not synthesized, such as the signature, fingerprint and face.
There are 10 entity types in the front image, and 15 in the back. Table 4.1 presents all the entity
types in the front images, while table 4.2 presents the entity types in the back images, as annotated

4BID generator is available at https://github.com/AlyssonDSS/GeradorBaseSintetica.

https://github.com/AlyssonDSS/GeradorBaseSintetica
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Front
Tag Meaning Count

nome Identity holder’s name 595
filiacao1 First parent name 590
filiacao2 Second parent name 580
datanasc Date of birth 595

naturalidade Place of birth 595
orgaoexp Issuing authority 495

serial 5-digit serial code 375
codsec 4-digit hex code 380

rh Blood type and Rhesus factor 90
obs Observation 100

Table 4.1: All field types present in the front section of the dataset.

Back
Tag Meaning Count
rg General registry number 660

dataexp Date of expedition 660
regcivil Civil registry of issue 900

cpf Physical person registry number 655
dni National identification document number 40
te Voter’s registry number 330

ctps Worker’s record and social security number 355
serie Serial general registry number 260
uf State of expedition 260
pis Social integration program number 310

profissional ID number for some professions 55
cnh Driver’s license number 210
cns National health card registry 200

militar Military identification number 175

Table 4.2: All field types present in the back section of the dataset.

in the label files, their meaning and the number of times they appear in the entire dataset. For the
front images, every entity may appear at most once, while the civil registry may appear twice in
the back images, since it is often composed of two lines instead of one like the other fields.

We also define a fifteenth entity deemed "other" in the back documents for spurious
information that may be annotated but does not belong to any of the listed classes. This class is
not present in our dataset.

Figure 4.2 presents some of the easiest instances for front and back in the dataset.
Figure 4.3 presents some more challenging instances, again for front and back.

We now go into detail on the syntax and generation of each field. As described in
section 4.1.2, the text generation is a sequential process with dependencies. There is no correlation
between the front and back images, i.e., there is no such information for two separate images
representing the two faces of the same document. However, for every document we generate all
of the fields, regardless of whether it may be used or not.
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Figure 4.2: Easy front and back documents.

Figure 4.3: Some more challenging front and back documents.
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Upon initialization, the person object is represented by an empty dictionary. Then, the
dictionary is filled in the following order. First, the parents’ names. Then, the card holder name
and the cpf and rg fields. Then we generate cnh, pis, dni, naturalidade, uf and regcivil. Then,
the date of birth and date of expedition. Then, orgaoexp, obs, cns and rh. Then we generate te,
militar, profissional, ctps and serie.

The dependencies are as follows. The card holder name depends on the parents’ names.
Date of expedition depends on date of birth (and vice-versa: in the implementation, if one is
defined, then the second must go before or after it). The voter’s registry depends on the date of
birth. The ctps field depends on the date of birth and of cpf. The serie field depends on ctps and
cpf. The fields profissional, militar and cnh all depend on the date of birth.

The name dependencies exist to ensure the holder’s surnames are based on the parents’
names. For the fields te, profissional, militar, cnh and ctps, the date of birth is a dependency
because a person too young is not legally allowed to vote, work or drive, and as such the document
must not contain these fields. For militar, cnh and ctps, the restriction defined in our code is the
age of 18, while for te and profissional it is the age of 16.

For the name generation, we use a weighted name dictionary, that contains male, female
and undifferentiated names alike. There is a grand total of 29511 names, where the vast majority
(29537, precisely) have a weight of one. The remaining, more popular names (exactly 154), have
a higher weight in order to reflect their higher frequency in the population. Our base dictionary
is the one provided in the original BID synthesizer, and we add 38 new names to it.

Out of the 154 weighted names, the 10 most frequent are assigned a weight of 4, the
following 11-50 names have a weight of 3, and the rest are assigned a weight of 2. We leave the
surname dictionary unchanged, and it is the same from the original BID generator. The parents’
names are generated as two or three random names from the dictionary (the probability is one
half for each) plus one random surname. The holder name is generated as two or three random
names (at a probability of 2/3 to be two names) plus one surname.

If the holder name is set at three names, one surname between the two parents’ surnames
is chosen randomly (at a probability of one half for each). If the holder name is set at two names,
there is a probability of 1/4 that the holder will gain one random surname between the two parents’
names, and a 3/4 probability that the holder will gain both surnames.

Both cpf and rg fields are generated with random numbers: cpf takes 9 random digits
and adds 2 verification digits, while rg takes 9 random digits and 2 verification digits. The syntax
for each field is "000.000.000-00" and "00.000.000-00", respectively. The cnh field is identical to
rg. The cns, militar, te and pis fields are all based on random digits as well. For cns, the text
generated consists of a string of 15 random digits, while for militar it is 7 digits. For te, it is a
string of one zero followed by 12 random digits. The pis field is composed of a string 11 random
digits in the format "0000.00000.0-0".

The rh field is a combination of the blood type (A, B, AB, O) and the Rhesus factor (+
or -). The date syntax is "dd/mm/yyyy". All age-conditioned fields are set to "*****" in case the
condition is not met, and dni is always set to the anonymous string.

The fields for ctps and serie are both derived from the cpf field. For ctps, the generated
text consists of the concatenation of the first 8 digits in cpf, without formatting. For serie, the last
four digits of cpf are concatenated, again without formatting.

The uf, orgaoexp, obs and naturalidade fields are all based on dictionaries. The uf
field is chosen randomly from all 27 federative units in Brazil, and corresponds to their 2-letter
code. For naturalidade, the syntax is "city-state", where state is a 2-letter code for a federative
unit accordingly, and the cities are chosen uniformly from a dictionary (we also use the cities
dictionary provided in the original BID generator repository). The orgaoexp field corresponds to
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the acronym for the responsible legal units with authority of identity card issuing. There are ten
of them in our implementation. The obs field may be any random letter from the latin alphabet
followed by a semicolon, or the text "EXERCE ATIVIDADE REMUNERADA;".

The profissional field has the following syntax: "<ORG>/FU 00.000.000", where
<ORG> is one of "CREA" or "CONFEA", which are national councils responsible for labor
surveillance, FU corresponds to the 2-letter code for some brazilian state, and the first digit is
always set to zero. Both codsec and serial are implemented by random codes: codsec is a string
of 5 random digits with syntax "0000-0", and serial is a 4-digit random hex code.

Finally, regcivil is the most complex field, as not only is it usually comprised of two lines,
but its syntax also varies wildly in real documents. To represent the complexity found in the wild,
we define three different templates. The first template is of syntax "CERT.NAS=000 LV=000
FL=000" for the first line and "CART. <ZONA>-CITY/FU". In the first line, the numbers are
randomly and uniformly sampled between 1 and 500. In the second line, <ZONA> may be any
between "SEDE" and "Xa ZONA" with X varying between 1 and 5, and CITY/FU corresponds
to a random city/state entry in the dictionary. All of the sampled numbers are padded with zeros
to the right if required to fit the template.

The second template has syntax "CERT. NASCIMENTO CARTÓRIO: <ZONA>
TERMO:0000000 FOLHA:0000" for the first line and "LIVRO: 00000 CITY-FU" for the second.
In the first line, the number accompanying TERMO is sampled between 1 and 1000000, and the
number for FOLHA is sampled between 1 and 8000. In the second line, the number for LIVRO
is sampled between 1 and 10000, and CITY-FU is another entry in the cities dictionary.

The third and final template has syntax "CITY-FU CN:LV.a0000/FLS.0000/N.0000" for
the first line and "MATRÍCULA: 000000 00 00 0000 0 00000 000 0000000 00" for the second.
The numbers sampled for the first line are, in order of appearance: 1 and 1000, 1 and 1000 and 1
and 195000. The third number may vary in length, but always has a minimum of 4 digits with
zeroes to the left if smaller than 1000. Every digit in the second line is randomly chosen from 0
to 9.

We also employ a probabilistic generation for te, ctps, cns, profissional and militar fields.
The intuition is that not every adult possesses these credentials and, if they do, they may have
been acquired posterior to the issuing of the document. As such, if the generated age obeys the
criteria, we also check a probability for non generation of the fields. For militar, this probability
is 5 out of 6. For profissional and cns, it is 2 out of 3. For ctps, it is 1 out of 4 and for te it is 1 out
of 2.

4.3 GAN INPAINTING

Previous research in document synthesizing (Álysson Soares et al., 2020) used a simple filter
for pixel value replacement. Given an entity and its bounding box, for every pixel contained
within the bounding box, the dominant and average colors are calculated, and the pixel value
is replaced by the higher of the two. The dominant color is calculated using the median cut
algorithm (Heckbert, 1998), while the average color is defined as the arithmetic mean between
the value of the pixel itself and the pixel directly above and below.

While this approach does safely dilute the information contained by the region to the
point of no recovery, the result looks artificial, and the fine-grained detail contained in the
background image is lost. We improve this approach by using a GAN model to learn the the
document’s background and, using this knowledge, inpaint the text in such a way that captures
context from the document itself.
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Figure 4.4: Double bounding box example for GAN training

Since the background pattern for the ID cards used is known, it should be possible to
train a model to learn and reconstruct it, taking into account the neighboring regions such that
there is a smooth transition in images of real documents, which often display visual signs of use.
There is significant research in the area of image reconstruction, but the scope in the field is more
broad and, again, research for document image reconstruction is very limited, if not non-existent.
Our approach is based on an existing image inpainting GAN, which we modify and train using a
novel procedure for background reconstruction.

One problem we immediately stumble on is the unavailability of existing raw document
images, with no text. Although the background pattern is known, without significant instances
of it, it is hard to train a machine learning model to reconstruct the same pattern in images that
feature problems such as partial occlusion (a picture taken by a person whose thumb is directly
upon the document), non-trivial perspective shifts (i.e. the document is not a rectified rectangle)
and documents that have varying colors due to erosion over time.

Our approach to circumvent this problem relies on double bounding boxes annotated in
the following manner. For every entity we want to erase from the document, two bounding boxes
are annotated. The first one is tightly wrapped around the text, while the second one contains the
first one completely and spans part of the background surrounding the text (but does not include
any text from other parts of the document). The GAN is asked to reconstruct the entire area on
the second bounding box, including the text, but the loss function is only applied to the area of
the second box that is not comprised by the first box. The idea is to condition the network into
learning based only on the background surrounding the entity, and subsequently erase the text
with the same background.

Figure 4.4 illustrates our approach. The green box represents the outer bounding box
that covers the background, while the orange box is the inner box fit tightly around the text. The
loss is calculated based on the green area that does not contain the orange area. The presented
document is an earlier sample and is not contained in our dataset.

The GAN we chose is the GLCIC (Iizuka et al., 2017) model. GLCIC is composed of a
CNN-based completion network and a two-stage discriminator for local and global image patches
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pooled together by a linear layer. In the existing implementation of GLCIC5, these components
are trained, first separately in a two-stage process, where the completion network is trained with
a MSE loss in the first stage, and the discriminator is then trained based on the results from the
completion network vs the real images with a BCE loss. The third phase is comprised of the
adversarial training.

In particular, we highlight two details about the components. The completion network,
which is a CNN, features four dilated convolution layers in the middle, sandwiched by conventional
convolution layers. This is done in order to allow for taking a bigger area into account in the
model. The discriminator is also based on convolution layers. The global module takes the entire
512x512 image into account, while the local discriminator takes the 256x256 square that may be
real or artificially generated. The output of the two is concatenated and passes through a linear
layer, into a binary decision between fake or real.

We use the provided implementation of GLCIC, and modify it for training with annotated
bounding boxes instead of randomly generated squares. We train it with an early stopping of three
epochs on the loss function, every epoch spanning 100k steps as per in the original implementation.
We manually annotate 50 synthetic images from the dataset, and split these into 42/4/4 images
for training, validation and testing respectively. These images are generated from early instances
of our synthesizer, and all of them are of the front of the document.

Furthermore, we modify the base model in two ways. The first of them is a change in
the discriminator. As stated, it is composed of a global and a local module, which take as input
the image itself and a fixed-size patch, convolved consecutively in six and five layers respectively.
In particular, the GAN is trained by reconstructing 512x512 patches chosen randomly within the
image. Since the annotated bounding boxes are of varying size, the CNN-based local component
cannot be used as-is anymore, and we opted for discarding it.

The second modification is the replacement of the loss function. We develop a new loss
function from the Structural Similarity measure (SSIM), calculated as in equation 4.1, where
x is the GAN output, with all of its bounding boxes reconstructed, and p is the original image.
SSIM is a better similarity measure for our case than MSE because the reconstruction goal is to
understand and replicate a texture, and as such basing the learning on a structural measure makes
more sense than using the pure pixel value as in the MSE loss. The values of the inner bounding
box are set to zero in order to not interfere with the loss function at all.

𝐿𝑜𝑠𝑠𝑠𝑠𝑖𝑚 = 1 − 𝑆𝑆𝐼𝑀 (𝑝, 𝑥) (4.1)

In our experiments, we’ve trained the network separately with both losses, and compared
the results qualitatively. In particular, we notice that the result for the MSE loss presents some
artifacts in the inner bounding box that are not present for the SSIM loss. We also compare the
GAN results with the previous inpainting method, and notice that the GAN method manages to
capture some fine-grained detail from the background, allowing for a smoother transition between
the region itself and the background. Although not all details from the background pattern are
learned, the model managed to create a fairly convincing and clean inpainting capturing the
context from the neighboring regions.

Our results are illustrated in Figure 4.5. The first image is the original (synthetic)
document, anonymized with our chosen approach. The second image represents the bounding
box of inpainting. The third image is the result of anonymization with the previous method. The
fourth image is the GAN inpainting with the MSE loss, and the last image is our final approach,
the GAN trained with a SSIM loss.

5Available at https://github.com/otenim/GLCIC-PyTorch
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Figure 4.5: Inpainting results.
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Figure 4.6: Some anonymized documents.

Finally, we have also considered a few texture-specific measures, namely STSIM-1 and
STSIM-2 (Zujovic et al., 2013), for the loss function modeling. However, these measures have
displayed a big calculation overhead that has made training unfeasible. We showcase some results
of our inpainting in Figure 4.6.

4.4 MODELS FOR EVALUATION

The dataset is used for training and testing of three document vision models. These are PICK (Yu
et al., 2020), StrucTexT (Li et al., 2021b) and DocFormer (Appalaraju et al., 2021). The reason
behind the choices is the availability of code. Both PICK and StrucTexT have official open source
repositories6, PICK making the training and testing routines directly available. The DocFormer
implementation is also available, although it is an unofficial repository with authors unaffiliated
with the writers of the paper7.

For StrucTexT and DocFormer, the training routines were not available at the time of
writing, and as such have been developed by us in accordance to the fine-tuning stage of the
entity labeling task. Both of these models, which are based on multi-modal Transformers, rely
on a heavy pre-training stage with task-agnostic training goals (further detailed below) on huge
datasets as a means of understanding the structure of documents before specializing it on various
downstream tasks. This approach is commonly used in NLP problems, and we interpret it as
learning the syntax of the medium first, in the pre-training, and then learning the semantics in the
fine-tuning phase.

We skip this stage for a few reasons. First, it is very computationally expensive, to the
point of being unfeasible with the given hardware, and the pre-trained weights for both models
were not available at the time of writing. Second, the implementation of the pre-training tasks
were also not available Finally, as our goal is simply to evaluate the impact of artificial data on
training, and not to perform a comparative analysis between the models, we judge that such a
procedure is not necessary.

6PICK is available at: https://github.com/wenwenyu/PICK-pytorch, StrucTexT at https:
//github.com/PaddlePaddle/VIMER/tree/main/StrucTexT/v1.

7Available at https://github.com/shabie/docformer

https://github.com/wenwenyu/PICK-pytorch
https://github.com/PaddlePaddle/VIMER/tree/main/StrucTexT/v1
https://github.com/PaddlePaddle/VIMER/tree/main/StrucTexT/v1
https://github.com/shabie/docformer
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4.4.1 PICK

PICK uses an Encoder-Decoder architecture together with a graph module for the task of
Key Information Extraction. It is composed of the three modules, where the encoder crafts a
hidden representation for text embeddings and image segments, which are combined into a local
representation for each entity in the document. This representation is called a "node", and the set
of nodes is input into the Graph module, which aims to learn the inter-segment relationships
between nodes through a graph convolution operation. Finally, the decoder takes both the graph
embeddings and the set of nodes from the encoder, and fuses the information. The decoder treats
the information extraction task as a task of sequence tagging. As the other models, it also uses
multi-modal text, vision and layout features for document learning.

The encoder module is composed of a Transformer, a CNN, and a fusion operation. The
text segments are encoded by the Word2Vec (Mikolov et al., 2013a) embedding and input into
a pre-trained Transformer for encoding. The corresponding image segments are encoded by a
CNN, the implementation of which corresponds to a pre-trained ResNet50. The two features are
fused by a simple element-wise adding operation, the output of which corresponds to the set of
nodes, one for each entity in the document.

The nodes output by the encoder layer are then fed into the Graph module. This module
aims to capture the relationship between entities (nodes) through the graph modeling. The paper
expands upon previous research on graph learning convolutional neural networks. Their method
computes a soft adjacency matrix in various steps.

First, the graph learning component takes the visual input of the nodes, and generates
the adjacency matrix where each element represents the pairwise relationship weight between
two nodes, similar to the attention matrix in Transformers. This component consists of a single
layer, with a learnable set of weights. The matrix will be composed of the weighted difference
between two nodes, as in equation 4.2. The LeakRelu is used in order to prevent the vanishing
gradient issue. The loss function for the graph component is calculated based on this matrix and
on the proximity of the nodes in the embedding space.{

𝐴𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑒𝑖), 𝑖 = 1, ..., 𝑁, 𝑗 = 1, ..., 𝑁
𝑒𝑖 𝑗 = 𝐿𝑒𝑎𝑘𝑅𝑒𝑙𝑢(𝑤𝑇𝑖 |𝑣𝑖 − 𝑣 𝑗 |)

(4.2)

Then, the visual and textual features are fed into a MLP network for feature extraction.
The features output from the MLP are convolved, which spreads the information between the
nodes and generates a new representation. This is convolved together with the adjacency matrix
in the graph convolution component, which aims to capture global visual information and
layout nodes. The convolution is done in the node-edge-node triplets (which means the learned
embeddings of two nodes together with their relationship score) and aims to generate the relation
embedding between the two nodes.

Initially, it is set as the concatenation between the distances in the x and y axes, the
aspect ratio of the first node, the ratio between the height of the second and the height of the
first node, the ratio between the width of the second node and the first, and the ratio between the
text length of the second and the first. This embedding is multiplied by a learnable matrix of
dimensions hidden size by six.

The hidden features between two nodes are then extracted by the graph convolution
operation, which is defined for the l-th layer in equation 4.3. Here,𝑊 represents the learnable
weight matrices, 𝑏 is a bias parameter, 𝛼𝑖 𝑗 is the relation embedding generated from a layer-specific
trainable matrix for each layer and the hidden node-to-node representation in the same layer, and
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𝜎 is a non-linear activation function. The paper does not disclose the number of layers in the
graph convolution operation, but the implementation uses a default of 2.

ℎ𝑙𝑖 𝑗 = 𝜎(𝑊 𝑙
𝑣𝑖ℎ
𝑣𝑙𝑖 +𝑊 𝑙

𝑣 𝑗ℎ
𝑣𝑙𝑗 + 𝛼𝑙𝑖 𝑗 + 𝑏𝑙) (4.3)

The decoder takes as input the concatenation between the set of nodes output by the
encoder and the hidden representation learned by the graph module, and is composed of a union
layer, a BiLSTM layer and a CRF layer. The union layer simply concatenates the features and
adds a padding value at the end. The BiLSTM layer features a standard model for generating
scores that will be classified by the CRF, which generates a family of conditional probabilities via
a softmax for each sentence. The idea is that each token is tagged independently, but the entire
sentence must have only one label.

Training is made jointly by combining the loss of the graph learning module and the
loss of the CRF layer by multiplying the graph loss by a constant 𝜆 and summing the two. By
default, 𝜆 = 0.01. PICK does not feature any pre-training task, instead it is used for the KIE
downstream task directly. It uses a hidden size of 512, 2 BiLSTM layers, 3 layers in the encoder,
and a learning dimension of 128 for the graph module. These numbers are gathered from the
model configuration in the official implementation, and not reported in the paper.

The optimizer used is the Adam algorithm, with a learning rate of 10−4, with no weight
decay. The model is trained for at most 100 epochs with an early stop tolerance of 40. We
use these parameters, saved as the standard configuration in the git repository, as our training
procedures for the proposed dataset.

4.4.2 StrucTexT

StrucTexT is a Transformer-based architecture that relies on a cross-modal fusion of multi-
modal feature embeddings and self-supervised pre-training techniques to reach state of the
art performance in entity labeling. The features used include a layout embedding, a textual
embedding, and a visual embedding, as well as a few supporting embedding pieces. StrucTexT is
designed for various downstream tasks, including token and segment (entity) level labeling. In
our experiments, we consider the segment-level model.

The layout embedding is created from the four coordinates in the 2D axes encoding the
top left and bottom right corners of the entire entity bounding box, the width and the height. For
the token-level embeddings, the bounding box is estimated from the entity bounding box. It
is important to note that a linear layer is used to project each embedding modality separately,
although this is only implied in the paper.

The textual embedding is crafted from the text sentence as tokenized by the Word-
Piece (Song et al., 2020) algorithm. The text from the entire document is tokenized and serialized
according to the top to bottom, left to right order according to the bounding box coordinates,
resulting in a language sequence where each slot in the array corresponds to the text of one entity
in the document. The final embedding is created from the element-wise sum of the encoded
textual segment with the layout embedding. It is not mentioned in the paper, but the text is
encoded with an ERNIE (Zhang et al., 2019) model in the official implementation.

The visual embedding is based on each entity’s bounding box, which is encoded via
a pre-trained ResNet50 (He et al., 2015) + FPN (Lin et al., 2016) model. The embedding
is extracted from the encoding via a ROIAlign (He et al., 2017), and then summed with the
corresponding layout embedding. The feature maps for the entire document image are also
embedded as the first visual embedding, enabling the interaction with the global information in
the document in each segment.
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There are also three other embeddings: a segment id, which assigns an unique identifier
to each text segment’s feature maps, a position embedding that identifies the token’s position
within its text segment, and a segment embedding, which denotes the modality of each feature.
This segment embedding is an ID that is the same for visual and textual embeddings stemming
from the same entity. The full feature maps are constructed by concatenating the textual and
visual features, and then adding the three other embeddings to the result. If necessary, a shorter
input will padded with a special token, while longer inputs will be truncated, to ensure a length
of 512 tokens.

These features are then encoded via a Transformer model, fusing them into a multi-modal
output that is used in three self-supervised tasks: Masked Visual Language Modeling (MVLM),
Segment Length Prediction (SLP) and Paired Box Detection (PBD). There are no changes to the
standard Transformer architecture, and the attention mechanism utilized is also standard. As
such, we skip to the pre-training task descriptions.

In MVLM, 15% of the textual tokens are randomly selected. Out of these, 80% are
replaced with a special mask token, and 10% are replaced with a random token from the corpus.
The other 10% are left unchanged. The model must then reconstruct the original sequence
based on the textual and visual context in the encoded features. This task is trained using a
Cross-Entropy loss, as it may be interpreted as a classification task. This is a variant of the
Masked Language Modeling (MLM) introduced by BERT (Devlin et al., 2019), and is originally
proposed in LayoutLM (Xu et al., 2019)8. The goal for MVLM is to learn the syntactic structure
in text, as well as aligning the shared knowledge between visual and textual features.

SLP is a novel task proposed by the authors. From the visual features only, the model is
asked to find the length of the corresponding text segment. This is done to learn more fine-grained
information in the image-side, and the authors argue that it aids the model into learning more
robust cross-modal feature fusions. The loss used is not described, but it may be a CE loss as
well for the same reason as MVLM. An important detail is that WordPiece tokenizing may split
words into subwords and thus increase the token count for an entity. The authors consider only
the first sub-word for these split words, in order to keep a consistent length.

The authors also propose a second novel task. PBD is designed to exploit global layout
information, and consists of a classification task for the relationship between two entities. Given
two entities and their representation after the Transformer encoding, the model must predict the
angle (discretized into 12 buckets of 30 degrees) between the two according to the subtraction of
the two features.

Finally, these tasks are used for pre-training on the DocBank (Li et al., 2020) and
RVL-CDIP datasets (Harley et al., 2015) for 10 epochs with a batch size of 64. With the
pre-trained weights, the original paper describes three ways to utilize the features for three
different downstream tasks, and the model is evaluated on these. They are segment and token
level labeling and entity linking.

For both labeling tasks, the Cross-granularity Labeling Module replaces the pre-training
tasks in the fine-tuning phase. The process is described as such: the tokens with the same
segment ID in the language embedding are aggregated by an arithmetic average. For token-level,
each token is averaged from the subwords composed by WordPiece, and in segment-level, all
subwords belonging to the entity are averaged. The average is then fused with the visual feature
through a Hadamard product, and a fully connected layer is used for prediction. Both tasks are
classification tasks, and as such both use the Cross-Entropy loss.

8The original MVLM in LayoutLM proposes that the image regions also be masked. StrucTexT authors have
opted for not following the practice.
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In entity linking, the Segment Relationship Extraction Module is devised for classification.
Similar to the attention matrix in Transformer layers, this module calculates a square matrix that
encodes the probability that a token is linked to another. This is done by multiplying the output
features with a matrix of learnable parameters, and using a sigmoid activation equation at the end.

This is an expensive operation, and the authors use the Negative Sampling technique
introduced by Word2Vec (Mikolov et al., 2013b). It consists on stochastically ignoring part of
the embedding that may not be relevant each iteration, and only updating the weights partially.
This introduces instability on training, and as such the Binary Cross-Entropy loss used for this
task is combined with a Margin Ranking loss.

Our training is based on the existing implementation of the model, and we perform
fine-tuning on entity labeling directly on our dataset with randomly initialized weights. The
model is trained with an early stopping tolerance of three epochs, a learning rate of 5 ∗ 10−5

and the Adamax optimizer. The architecture utilizes the same parameters as that of the base
Transformer encoder, with 12 layers and 12 attention heads, and a hidden size of 768.

4.4.3 DocFormer

DocFormer (Appalaraju et al., 2021) is an end-to-end trainable transformer that experiments with
a new way of fusing multi-modal features and of modeling self-attention. It also draws information
from the three modes: layout, visual and textual, and fuses them explicitly and implicitly using a
Transformer architecture. The training also follows the unsupervised pre-training and supervised
fine-tuning stages.

The layout features are gathered at both word and segment level. In particular, for every
token in the text, the bounding box coordinates are extracted and used for encoding of various
features. The width and the x-axis coordinates, and height and the y-axis coordinates, are encoded
separately by two linear layers, together with the distance between the centroids and four corner
of the given entity and the corresponding coordinates in the next entity in the left-to-right order.

The output for the x and y axis features are summed, together with an absolute 1D
positional encoding that contains the index of each entity. This encoding process happens twice,
as the layout features for the text and visual embeddings are separate, meaning there is a total
of four linear layers for this embedding. This is done primarily because the features may be
modality-specific.

The textual features are also acquired from the tokenized sentence (again, using the
WordPiece algorithm), with the same padding and truncating techniques to ensure a length of
512. The tokenized sequence is fed through an embedding layer, initialized with pre-trained
LayoutLM weights.

Visual features are obtained using a ResNet50, from which the convolution map at layer
4 is extracted. This map is then convoluted with a 1𝑥1 kernel, flattened and passed through a
linear transformation layer. The result is a (768𝑥512) feature embedding, which is the same
dimensionality and the textual embedding, which also has a hidden size of 768. There is also a
global representation for the entire document, as in StrucTexT.

The Transformer architecture used as backbone for the model is different for DocFormer.
The model presents two separate flows for the Transformer, one for each modality between visual
and textual, with separate weights in the matrizes of each flow. The authors also experiment with
novel methods for feature fusion that utilize an altered version of the self-attention mechanism.
The standard Transformer’s attention distribution is based on the output of the previous layer and
three learnable matrices for key, query and value. DocFormer expands the equation by adding in
three other results: the query and key ID relative attention and the feature modal attention.
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The query ID relative attention is the multiplication of the query matrix by the incoming
features from the Transformer flow. the result is then multiplied by the 1D relative position
embedding between each pair of tokens. This result is "clipped", so that the model attends to local
features more heavily. The key ID relative attention is analogous, but utilizing the key matrix
instead. It is important to note that the matrices involved, including the vanilla self-attention that
is also calculated with the same key-query matrices, are modality-specific and not shared.

The feature modal attention is calculated with two separate key and query matrices,
which are shared across both modalities. This is the point of cross-modal interaction, and the
attention scores are calculated from the initial embeddings, not from the Transformer flow. The
output of the four attention scores, vanilla, relative key and query and cross-modal, are summed
to yield the final attention score.

The Transformer encoder architecture used is modified with the new attention mechanism,
and "residual" connections from the input visual features and bounding boxes are added in the
odd and even layers, respectively. This is simply for computing the cross-attention. Other than
these changes, the architecture used is a simple 12 layers with 12 heads encoder, with a hidden
size of 768.

The paper also describes three novel pre-training tasks: Multi-Modal Masked Language
Modeling (MM-MLM), which is a twist on the MLM task introduced by BERT Learn To
Reconstruct (LTR) and Text Describes Image (TDI). The pre-training goal is the weighted sum
of the losses for the three tasks, and the weights are set as 5, 1, and 5 for MM-MLM, LTR and
TDI respectively. MM-MLM is described as identical to MVLM from StrucTexT, including
the fact that DocFormer does not mask the visual features. The loss function used is also the
Cross-Entropy.

LTR is a similar task to MM-MLM, but on the image side. The entire image is masked
with the same proportions, and the model is asked to reconstruct the original image using
multi-modal features. For this task, a shallow decoder is attached to the output of DocFormer,
presumably a one-layer Transformer decoder. Unlike MM-MLM, the loss used is a smooth-L1
loss.

For TDI, the output of the multi-modal encoding is pooled by a linear layer and fed into
the model. The model must then predict a binary label for the features, representing whether the
image corresponds to the right text. For each batch of images, 20% have their textual features
replaced with ones from another image. Since the negative pairing interferes with the LTR task,
the LTR loss is ignored in these cases.

DocFormer is presumably pre-trained on the IIT-CDIP dataset, as the paper performs a
comparative analysis of pre-training with other models (such as LayoutLM) which have been
pre-trained on the same corpus. For the downstream tasks, a trainable linear head is attached to
the end of the model for class prediction on each dataset used for evaluation. Our implementation
for the entity labeling task follows the practice used in StrucTexT, described above. We train the
model on our dataset using the AdamW optimizer with a learning rate of 2𝑒 − 5, with an early
stopping parameter of three epochs.
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5 EXPERIMENTS

In this section, we detail the experiments run on the proposed dataset. The hyper parameters,
optimizers and learning rate configurations are all described in section 4.4, and we reiterate these
here.

For PICK, we use the standard model configuration found in the official implementation,
including learning rate schedulers and other hyper parameters. PICK uses the Adam optimizer
with a learning rate of 10−4 with no weight decay. The model is trained for at most 100 epochs
with an early stopping tolerance of 40 epochs. The graph loss weighting parameter is set to
0.01. Hidden size is set to 512. Decoder features 2 BiLSTM layers, encoder uses 3 layers.
Graph module has a hidden size of 128. All these parameters are gathered from the official
implementation.

For StrucTexT, the architecture is a standard Transformer encoder with 12 layers and 12
attention heads, and a hidden size of 768. We train the model for up to 50 epochs with an early
stopping tolerance of three epochs and a learning rate of 5 ∗ 10−5, using the Adamax optimizer.
We do not perform pre-training, nor use any pre-configured weight initialization.

For DocFormer, the same Transformer architecture is used, with 12 encoder layers, 12
attention heads and a hidden size of 768. The model is also trained for up to 50 epochs with an
early stopping tolerance of three epochs. The optimizer used is AdamW with a learning rate of
2 ∗ 10−2.

Although it may seem unfair to allow a lower early stopping tolerance on the Transformer-
based models, our experiments have shown that these models are more prone to overfitting, and
also have a much faster convergence speed than PICK. We have found that there is not much to be
gained from extensively training the models further. Table 5.1 contains the number of trainable
parameters for each model.

5.1 TRAINING PROTOCOLS

Our goal is to understand the impact of adding more synthetic data to our dataset. To this end,
we simulate the training with larger and larger datasets by reducing the number of instances in
the training set in two ways. The first of them is to remove every instance created from some real
images from the dataset, and the second is to remove some instances crated from all real images
from the dataset.

These protocols are each carried in two parts. The first is to perform said removal to
reduce to 50% the size of the dataset, and the second is to do it to reduce the dataset to 25% of its
original size. As such, we have five training protocols, the fifth being the training with the entire
dataset.

We would also like to understand whether training with more than one type of document
will aid in understanding both. To this end, we perform three separate training stages, for the

Model Number of trainable parameters
PICK 68.580.056

StrucTexT 178.336.532
DocFormer 120.561.392

Table 5.1: Number of trainable parameters for each model
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Partition Full set Inst50 Inst25 Dup50 Dup25 Validation Testing
Front 355 180 90 142 71 130 110
Back 390 195 100 156 78 150 120
Full 745 375 190 298 149 265 245

Table 5.2: Number of synthetic instances in each set for each protocol.

Model Full set Instance 50 Instance 25 Duplicate 50 Duplicate 25
PICK 68.98 (90.22) 73.89 (88.75) 62.9 (80.65) 69.98 (89.98) 69.51 (83.08)

StrucTexT 55.63 (71.37) 50.37 (76.42) 37.75 (70.14) 46.63 (65.06) 42.75 (75.89)
DocFormer 84.87 (84.15) 73.38 (83.48) 44.5 (81.01) 69.13 (70.9) 48.38 (46.47)

Table 5.3: Micro-averaged F1-score for the front partition.

front, back and both types of documents. With this, every model is evaluated in 15 training
rounds.

The dataset is partitioned into the train, validation and testing sets with a ratio of
60%, 20% and 20% respectively. We reduce the training set size in each protocol, keeping
the validation and testing sets fixed. We label the first reduction as "instance" reduction, and
the second reduction as "duplicate" reduction. The duplicate reduction makes it so the total of
instances per real image is 2 and 1 for the 50% and 25% reduction respectively, for both front
and back. Table 5.2 presents the total number of synthetic instances in the training, validation
and testing sets on each protocol.

5.2 RESULTS

We report the results of the 15 protocols for the three models. Table 5.3 presents the results
for the front section of the dataset. We report the F1-score micro-averaged across all entities
as the metric. In parenthesis is the highest F1-score reached during the training phase. From
these results, we can gather that the Transformer-based methods seem to overfit more quickly.
DocFormer manages to reach the best F1-score for this experiment in the full set, but falls behind
when the training data becomes scarce.

In particular, we also note that PICK reaches a higher F1-score with a dataset reduction.
This may be due to some entities being relatively more scarce in the full set than compared to the
instance-reduced set, which makes the training more diluted in the second case.

In table 5.4, we can see a continuation of the trend observed in the front partition for the
back partition of the dataset. Again, there is a drastic drop in performance from the training to
the testing sets. The biggest example is the Instance 25 protocol on DocFormer, which features a
drop of 61.45 in the F1-score. Again, PICK is the leader when dealing with less data, across all
datasets. In particular, we note that there does not seem to be a significant change in performance
between the reduction types, but it is clear that the addition of more data benefits the training.

Model Full set Instance 50 Instance 25 Duplicate 50 Duplicate 25
PICK 84.73 (95.01) 73.05 (94.25) 61.23 (66.13) 74.38 (91.7) 72.61 (81.91)

StrucTexT 44.92 (81.43) 40.2 (91.22) 32.94 (93.38) 40.9 (79.5) 43.22 (80.71)
DocFormer 62.51 (94.54) 49.04 (95.77) 30.75 (92.2) 49.55 (93.5) 42.81 (90.76)

Table 5.4: Micro-averaged F1-score for the back partition.
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Model Full set Instance 50 Instance 25 Duplicate 50 Duplicate 25
PICK 67.2 (90.72) 65.41 (85.19) 48.8 (75.18) 67.18 (84.13) 60.5 (72.2)

StrucTexT 54.84 (89.62) 43.28 (88.36) 30.7 (84.52) 50.86 (89.15) 38.87 (82.9)
DocFormer 62.85 (92.54) 48.01 (93.59) 37.04 (86.99) 47.99 (85.33) 27.47 (86.44)

Table 5.5: Micro-averaged F1-score for the entire dataset.

Figure 5.1: Confusion matrix for the front partition

As for the full partition, table 5.5 presents the results for training on the entire dataset.
The results do not differ much from what was already seen in the other two partitions. In
particular, we note that the models do not experience a rise in performance when compared to
the single-mode training, which leads us to believe that multi-modal training does not bring a lot
of benefit for performance. On the other hand, we do have a drop in performance, and as such is
a potentially harmful practice, even though it could be more practical to have a single model
work for both types of documents.

Finally, for a deeper insight into the difficulty of our dataset, we present some of
the confusion matrices generated. We focus on PICK, which exhibited the most consistent
performance across all models in our training, and present the confusion matrix for the testing
set of the full set protocol for the front and back partitions.

Figure 5.1 presents the confusion matrix for the evaluation of PICK when training with
the complete partition of the front set. Of particular interest is the cluster on the name fields:
nome and filiacao1 and 2. These represent the card holder name and the two parents’ names.
The semantic similarity is not well discriminated by the layout features, and confusion occurs.

Figure 5.2 presents the confusion matrix for the evaluation of PICK when training with
the complete partition of the back set. We highlight that the entities with fewer instances in the
set have poorer relative performance. For cns, profissional and militar, the model failed more
often than succeeded. This may be due to the scarcity of these fields in our dataset. We note that
the dni field was not present in the testing set.
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Figure 5.2: Confusion matrix for the back partition
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5.2.1 Discussion and Conclusion

Our results have shown a constant trend of an increase in performance when adding more data
to the dataset. We also note that the dataset is fairly challenging due to the variations in data,
especially for fields that are relatively scarce in the document. Our studies with real data are left
as a future work.
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6 CONCLUSION

In this work, we focused on building a dataset for document vision tasks. We built a synthesizer
for document anonymization and text generation, expanding upon previous research for broader
territories in the field of Document Recognition. We presented a novel inpainting method using a
specially trained GAN and conditional rule-based entity generation to achieve maximum fidelity
to the real instances.

Finally, we evaluated the dataset using three different VDU models. Our experiments
focused on learning the impact of adding more data to the training set, and we show that annotating
more instances, even though it may be more expensive in time and resources, boosts performance
more than adding more synthetic instances per real image. We also show that the back partition
proves a bigger challenge and that joint training does not benefit the models.

We conclude that adding more synthetic data to the training sets largely improve model
performance, but we still note some difficulty in generalization. For future directions, we aim at
recreating the experiments with real data, in order to analyze the impact of adding synthetic data
in performance. We may also expand the synthesizer by adding support to different kinds of
document.
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